Auksinė dėžutė

Lapkričio 28, Pirmadienis

Dirbu su Statybos ir architektūros fakulteto studentais. Žinau, kaip nieko nenusimanau statybose, todėl stengiuosi pasimokyti iš tų, kurių pašaukimas – statyba.
*
Šiandien pasiūliau tokį uždavinį.
Turime vieno kvadratinio decimetro ploto kvadratinę auksinę plokštelę. Norime iš jos pasigaminti didžiausio tūrio uždarą gretasienio formos dėžutę. Kokią išklotinės iškarpą pasirinktumėte?
*
Susidomėjau, kai studentas nuėjo prie lentos ir pasiūlė „įstrižą“ iškarpą. Niekada nebuvau pagalvojęs, kad gal taip gausime talpesnę dėžutę, negu iš „stačios“ iškarpos. Nutariau išspręsti tą uždavinį.
*
Atsiprašau, nemoku braižyti nei kompiuteriu, nei ranka, bet gal suprasite…

dezute

Pirmasis atvejis.

pirmas

Antrasis atvejis.

antras

Pastebėkite, kad pirmuoju atveju „važiavome aplink“, panaudojome išvestinę tik norėdami garantuoti, kad gautasis tūris yra maksimalus, o šiaip tas tūris buvo aiškus be jokios išvestinės. Pastebėkime, kad taip bandant padaryti kubo formos dėžutę (šiaip jau didžiausio tūrio dėžutę, kurios paviršiaus plotas nekeistinas…), gautume:

trecias

Šis tūris yra mažesnis už anksčiau gautąjį! O didžiausias tūris yra 1/32. Taigi, statybininkai…

******

Papildymas 2011 11 29.

dezute_1

O štai ir originalus sprendimas, kurį pasiūlė šios svetainės lankytoja (lankytojas?). Nors „dangtelis“ keistokas, bet už tai tūris – beveik pusantro karto (šaknis iš 2) didesnis už 1/32!  Įdomu, gal galima dar?…

***

P.S. Nubraižiau visai kreivai, nes jūs vis tiek visai nevertinate mano darbo… Kas čia per reitingai?! O man vis tiek atrodo, kad tokia diskusija naudinga.

patiko(1)



RSS

Atsakymai (12)

Burgis, Lapkričio 28 16:11  #

Na, pagirkite už darbą…

patiko(0)



Giedrius, Lapkričio 28 16:22  #

Baisu! Jokių „auksinių tualetų“, jokių „važiavimų aplink“…Ar mums reikia tokių statybininkų? Anot drg. Stalino, „…a ni slishkom li vy umny tov. Zhiukov (…Burgis)?

patiko(0)



įdomu, Lapkričio 28 18:31  #

Hm, man keistas pasirinkimas kad plotis ir aukštis vienodi (lygūs x). Pvz., jeigu ilgis y=0,8, plotis x=0,4, o aukštis z=0,1, tai gaunasi tūris V=0,032=1/31,25 > 1/32=0,03125. Gaunasi didesnis tūris.

patiko(0)



įdomu, Lapkričio 28 18:53  #

x=1/3; y=2/3; z=1/6; V=1/24 :)

patiko(0)



įdomu, Lapkričio 28 18:54  #

atsiprašau, t.y. V=1/27

patiko(0)



Burgis, Lapkričio 28 18:56  #

įdomu: puiku! Aš ir neteigiu, kad mano pateikti trys variantai yra geriausi! Aš palyginau tris, o dabar erdvė visiems keisčiausiems variantams…
P.S. „įdomu“, jei Jūs – mano studentas – galime derėtis…

patiko(0)



agni, Lapkričio 28 20:32  #

nesu tikra, ar nelaužau Jūsų žaidimo taisyklių, bet mano dėžutė būtų įpiešta įstrižai, dėžutės pagrindas būtų pačiame plokštelės viduryje, o viršutinis dangtelis būtų sudarytas iš keturių stačiųjų trikampių, kurie susidarytų plokštelės kampuose.

jei gerai suskaičiavau, tai tūris būtų šaknis(2) / 32

patiko(0)



Burgis, Lapkričio 28 20:39  #

agni: mes sutarėme, kad dėžutės dalių negalima lituoti, visą dėžutę reikia iškart sulankstyti iš iškarpos.

patiko(0)



agni, Lapkričio 28 20:48  #

na, mano iškarpa vis dar yra viena detalė, jos lituoti nereikia. Tik ją sulanksčius bus plokštelių sudūrimas ne ties kraštinėmis, o sienelės viduryje.

patiko(0)



Burgis, Lapkričio 28 21:43  #

agni: nesupratau, nes noriu miego… Rytoj gal suprasiu.

patiko(0)



įdomu, Lapkričio 29 00:32  #

Agni variantas puikus. Šios temos pirmajame paveiksliuke beveik ir yra tas variantas: gretasienio pagrindas – pirmo paveiksliuko centre nupieštas kvadratas kurio kraštinė šaknis(2)/3. Gretasienio aukštis – šaknis(2)/6. Tik tūris gaunasi dar didesnis nei užrašė: šaknis(2)/27.

patiko(0)



Burgis, Lapkričio 29 11:42  #

agni: supratau ir dėkoju! (Žr. papildymą). Daugiau šia tema nediskutuosiu, nes oponentai kandžiojasi… Kodėl kandžiojasi? Nesupratau ir jau niekada nesuprasiu…

patiko(0)



XHTML

Leistinos XHTML žymos:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>